Aller au contenu

# TRIM1

Ce contenu n’est pas encore disponible dans votre langue.

The TRIM1 node is based on a numpy or scipy function. The description of that function is as follows: Slice off a proportion from ONE end of the passed array distribution. If 'proportiontocut' = 0.1, slices off 'leftmost' or 'rightmost' 10% of scores. The lowest or highest values are trimmed (depending on the tail). Slice off less if proportion results in a non-integer slice index (i.e. conservatively slices off 'proportiontocut'). Params: a : array_like Input array. proportiontocut : float Fraction to cut off of 'left' or 'right' of distribution. tail : {'left', 'right'} Defaults to 'right'. axis : int or None Axis along which to trim data. Default is 0. If None, compute over the whole array 'a'. Returns: out : DataContainer type 'ordered pair', 'scalar', or 'matrix'
Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar
import numpy as np

import scipy.stats

@flojoy
def TRIM1(
default: OrderedPair | Matrix,
proportiontocut: float = 0.1,
tail: str = "right",
axis: int = 0,
) -> OrderedPair | Matrix | Scalar:
"""The TRIM1 node is based on a numpy or scipy function.

The description of that function is as follows:

Slice off a proportion from ONE end of the passed array distribution.

If 'proportiontocut' = 0.1, slices off 'leftmost' or 'rightmost' 10% of scores.
The lowest or highest values are trimmed (depending on the tail).
Slice off less if proportion results in a non-integer slice index (i.e. conservatively slices off 'proportiontocut').

Parameters
----------
a : array_like
Input array.
proportiontocut : float
Fraction to cut off of 'left' or 'right' of distribution.
tail : {'left', 'right'}, optional
Defaults to 'right'.
axis : int or None, optional
Axis along which to trim data.
Default is 0.
If None, compute over the whole array 'a'.

Returns
-------
DataContainer
type 'ordered pair', 'scalar', or 'matrix'
"""

result = scipy.stats.trim1(
a=default.y,
proportiontocut=proportiontocut,
tail=tail,
axis=axis,
)

if isinstance(result, np.ndarray):
result = OrderedPair(x=default.x, y=result)
else:
assert isinstance(
result, np.number | float | int
), f"Expected np.number, float or int for result, got {type(result)}"
result = Scalar(c=float(result))

return result


Find this Flojoy Block on GitHub